Come una macchina può comprendere il linguaggio? Quali erano e come stanno evolvendo gli algoritmi? Quali sono i successi e soprattutto i limiti? Alla base dei moderni algoritmi di deep learning per il linguagio ci sono dei meccanismi molto semplici che hanno rivoluzionato il settore. Tra questi troviamo il concetto di Autoencoder e il meccanismo di Attenzione. Comprenderne la struttura, la base teorica che poi invoca la teoria dell’informazione classica è sia utile che interessante. L’idea è di mostrare con esempi semplici questi concetti ed enfatizzarne le applicazioni. Queste vanno dalla traduzione, alla generazione di testi fino alla diagnosi di malattie neurodegenerative. Ci sono però anche dei limiti, problemi che difficilmente una macchina è in grado di risolvere e che invece il nostro cervello comprende (quasi) al volo. E’ proprio navigando in questi limiti dell’intelligenza artificiale che comprendiamo quanto la nostra mente, oltre ad essere fonte di ispirazione per la ricerca, sia straordinaria.
Cristiano De Nobili
è un fisico teorico delle particelle, con un Ph.D. in fisica statistica alla SISSA di Trieste. Partendo dalla computer vision, ora è scienziato senior di Deep Learning nel team AI che lavora attivamente sul linguaggio intelligente presso Harman, una società Samsung. Cristiano è anche istruttore di Machine / Deep Learning per Deep Learning Italia, per AINDO (Trieste) e recentemente anche per il Master in High Performance Computing (SISSA / ICTP) tenutosi a Trieste.
0 Comments